AP Test Question2008 No Calculator Allowed 4) A particle moves along the x-axis so that its velocity at time t, for $0 \leq t \leq 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at $t=0, t=3$, and $t=5$, and the graph has horizontal tangents at $t=1$ and $t=4$. The areas of the regions bounded by the t-axis and the graph of v on thd the intervals $[0,3]$, [3,5] and $[5,6]$ are 8,3 , and 2 , respectively. At time $t=0$, the particle is at $x=-2$. a) For $0 \leq t \leq 6$, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer. At $t=3$ sec, the particle is farthest to the left at position $\boldsymbol{x}=-\mathbf{- 1 0}$.

A particle moves along the x-axis so that its velocity at time t, for $0 \leq t \leq 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at $t=0, t=3$, and $t=5$, and the graph has horizontal tangents

at $t=1$ and $t=4$. The areas of the regions bounded by the t-axis and the graph of v on thd the intervals $[0,3],[3,5]$ and $[5,6]$ are 8,3 , and 2 , respectively. At time $t=0$, the particle is at $x=-2$.
c) On the interval $2<t<3$, is the speed of the particle increasing or decreasing? Give a reason for your answer.

The speed is decreasing because $\lim _{t \rightarrow 3}|v(t)|=0$

A particle moves along the x-axis so that its velocity at time t, for $0 \leq t \leq 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at $t=0, t=3$, and $t=5$, and the graph has horizontal tangents at $t=1$ and $t=4$. The areas of the regions bounded by the t-axis and the graph of v on thd the intervals $[0,3],[3,5]$ and $[5,6]$ are 8,3 , and 2 , respectively. At time $t=0$, the particle is at $x=-2$.
b) For how many values of t, where $0 \leq t \leq 6$, is the particle at $x=-8$? Explain your reasoning. 3

A particle moves along the x-axis so
that its velocity at time t, for $0 \leq t \leq 6$,
is given by a differentiable function v whose graph is shown above. The velocity is 0 at $t=0, t=3$, and $t=5$, and the graph has horizontal tangents at $t=1$ and $t=4$. The areas of the regions bounded by the t-axis and the graph of v on thd the intervals $[0,3],[3,5]$ and $[5,6]$ are 8,3 , and 2 , respectively. At time $t=0$, the particle is at $x=-2$.
d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer. $\quad a(t)=v^{\prime}(t)$
$a(t)<0$ for $t(0,1)$ and $t(4,6)$ since the slope of the tangent is negative.

